Incorporating palm kernel meal, cowpea husk and soybean husk as protein sources in catfish diets: Effects on growth, hematology and intestinal histology

Authors

  • Christian Ayisi University of Environment and Sustainable Development
  • Moses Nganwani Tia
  • Samuel Osei Ayeh
  • Cecilia Asemah

Abstract

This study examined the effects of replacing fish meal (FM) with soybean husk (SBH), palm kernel meal (PKM), and cowpea husk (CPH) on growth performance, feed utilization, and intestinal histology of catfish. Four experimental diets were formulated with different proportions of PKM, CPH, and SBH to partially replace fish meal. Juvenile catfish (Clarias gariepinus) were fed these diets for ten weeks. The results indicated that inclusion of these alternative protein sources had significant effects on growth performance and feed utilization compared to FM diet. The weight gain recorded in this study was as follows: SBH (119.5±68.02) > CPH (113.2±53.14) > FM (104.3±56.82) > PKM (86.73±31.51). Feed conversion ratio ranged from 1.25±0.57 (SBH) to 1.52±0.56 (PKM). C. gariepinus fed the diet PKM had the lowest protein efficiency ratio (2.09±0.76), followed by those fed the FM (2.57±1.40) and the CPH diet (2.74±1.28). To a larger extent, the dietary protein sources significantly influenced serum hematology parameters. C. gariepinus fed the FM diet had the highest white blood cells count (133.0±2.51), which was significantly higher than all other groups (p < 0.0001). The range of red blood cell values observed in this study was 2.08±0.13 to 2.62±0.13. Histological examination indicated modifications in intestinal morphology, suggesting possible metabolic adjustments to the experimental diets. Fish fed the FM had the highest villus height (441.2±22.6), followed by SBH (398.3±7.51), PKM (279.2±15.65), and CPH (142.3±10.84). Villus width and muscular thickness also followed this pattern, with fish fed the FM diet having the largest villus width (153.7±9.06), significantly greater than all other groups (p<0.0001). Overall, incorporating CPH, and SBH into catfish diets appears to be a viable replacement for conventional fishmeal-based diets; however, further studies are required to determine optimal inclusion levels for achieving maximum growth and well-being.

References

Abalaka, S.E. (2013). Evaluation of the haematology and biochemistry of Clarias gariepinus as biomakers of environmental pollution in Tiga dam, Nigeria. Br. Arch. Biol. Technol., 56, 371-376.

Abarike, E.D., Cai, J., Lu, Y., Yu, H., Chen, L., Jian, J., Tang, J., Jun, L., & Kuebutornye, F.K.A. (2018). Effects of a commercial probiotic BS containing Bacillus subtilis and Bacillus licheniformis on growth, immune response and disease resistance in Nile tilapia, Oreochromis niloticus. Fish & Shellfish Immunology, 82, 229-238. https://doi.org/10.1016/j.fsi.2018.08.037.

Adamu, K.M., & Nwadukwe, F.O. (2013). Growth And Physiological Profiles Of Hybrid Catfish Fed Practical Diet In Different Water Regimes. Wayamba Journal of Animal Sciences, 13,1377084656

Aglago, A., Ayisi, C.L., & Ampofo-Yeboah, A. (2021). Effect of stocking density of juvenile Bagrid catfish Chrysichthys nigrodigitatus (Siluriformes: Claroteidae) on growth performance, feed utilization, proximate composition and water quality. Iran. J. Ichthyol., 8(4): 294-302

Ahmed, M., Liang, H., Chisomo Kasiya, H., Ji, K., Ge, X., Ren, M., Liu, B., & Zhu, X. (2019). Complete replacement of fish meal by plant protein ingredients with dietary essential amino acids supplementation for juvenile blunt snout bream (Megalobrama amblycephala). Aquac. Nutr. 25, 205-214. doi: 10.1111/anu.12844

Al-Thobaiti, A., Al-Ghanim, K., Ahmed, Z., Sulimana, E.M., & Mahboob S. (2018). Impact of replacing fish meal by a mixture of different plant protein sources on the growth performance in Nile Tilapia (Oreochromis niloticus L.) diets. Braz. J. Biol., 78(3): 525-534

Amin, K.A. and Hashem, K.S. (2012). Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus): antioxidant defense and role of alpha-tocopherol. BMC Vet. Res. 8: 45.

Andrews, S.R., Sahu, N., Pal, A., Mukherjee, S., & Kumar, S. (2011). Yeast extract, brewer’s yeast and spirulina in diets for Labeo rohita fingerlings affect haematoimmunological responses and survival following Aeromonas hydrophila challenge. Res. Vet. Sci. 91, 103-109.

AOAC. (2003). Official methods of analysis, 17th ed. Association of Official Analytical Chemists, Washington D.C., USA.

Ayisi, C.L., Alhassan, E.H., & Sarfo, F. (2021). Substitution Of Fish Oil With Palm Kernel Oil In Diets Of Oreochromis Niloticus Fry: Effects On Growth, Feed Utilization And Economic Estimates. Indonesian Aquaculture Journal, 16 (2), 99-107.

Ayisi, C.L., Zhao, J. & Rupia, E.J. (2017). Growth performance, feed utilization, body and fatty acid composition of Nile tilapia (Oreochromis niloticus) fed diets containing elevated levels of palm oil. Aquaculture and Fisheries, 2(2), 67-77. https://doi.org/10.1016/j.aaf.2017.02.001

Bansemer, M.S., Forder, R.E.A., Howarth, G.S., Suitor, G.M., Bowyer, J., & Stone, D.A.J. (2015). The effect of dietary soybean meal and soy protein concentrate on the intestinal mucus layer and development of subacute enteritis in Yellowtail Kingfish (Seriola lalandi) at suboptimal water temperature. Aquac. Nutr. 21, 300–310. https://doi.org/10.1111/anu.12160.

Bharti, S., & Rasool, F. (2021). Analysis of the biochemical and histopathological impact of a mild dose of commercial malathion on Channa punctatus (Bloch) fish. Toxicology Reports 8:443–455

Billah S.M., Sumi K.R., Howlader S., Sarkar S., Ferdous Z., Islam S.M., & Shahjahan M. (2022). Effects of supplemental L-methionine for total replacement of fish meal by soybean meal on growth, feed utilisation and health status of stinging catfish, Heteropneustes fossilis fry. Aquacult. Fish Fish. 2022:1–9.

Bongiorno, V., Gariglio, M., Zambotto, V., Cappone, E.E., Biasato, I., Renna, M., Forte, C., Coudron, C., Bergagna, S., Gai, F., & Schiavone, A. (2022). Black soldier fly larvae used for environmental enrichment purposes: can they affect the growth, slaughter performance, and blood chemistry of medium-growing chickens? Front. Veterinary Sci. 9, 1064017. https://doi.org/10.3389/fvets.2022.1064017

Botello-León, A., Martínez-Aguilar, Y., Viana, M. T., Ortega-Ojeda, M., Morán-Montaño, C., Pérez-Corría, K., Méndez-Martínez, Y., & Velázquez-Martí, B. (2022). Efecto del palmiste en la nutrición de alevines de tilapia (Oreochromis niloticus). Revista MVZ Córdoba, 27(2), e2527. https://doi.org/10.21897/rmvz.2527

Boyd, C. E., D'Abramo, L. R., Glencross, B. D., Huyben, D. C., Juarez, L. M., Lockwood, G. S., ... & Valenti, W. C. (2020). Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. Journal of the World Aquaculture Society, 51(3), 578-633.

Bu, X.Y., Wang, Y.Y., Chen, F.Y., Tang, B.B., Luo, C.Z., Wang, Y., Ge, X.P., &Yang, Y.H. (2018). An evaluation of replacing fish-meal with rapeseed meal in the diet of Pseudobagrus ussuriensis: growth, feed utilization, non-specific immunity, and growth related gene expression. J. World Aquac. Soc. 49, 1068–1080.

Cai W, Liu H, Han D, Zhu X, Jin J, Yang Y & Xie S. (2022). Complete Replacement of Fishmeal With Plant Protein Ingredients in Gibel Carp (Carassius auratus gibelio) Diets by Supplementation With Essential Amino Acids Without Negative Impact on Growth Performance and Muscle Growth-Related Biomarkers.Front. Mar. Sci. 8:759086. doi: 10.3389/fmars.2021.759086

Chen, Y., Ma, J., Huang, H., & Zhong, H. (2019). Effects of the replacement of fish-meal by soy protein concentrate on growth performance, apparent digestibility, and retention of protein and amino acid in juvenile pearl gentian grouper. PloS One 14, e0222780. doi: 10.1371/journal.pone.0222780.

Cheng, Z.Y., Ai, Q.H., Mai, K.S., Xu, W., Ma, H.M., Li, Y., & Zhang, J.M. (2010). Effects of dietary canola meal on growth performance, digestion and metabolism of Japanese seabass, Lateolabrax japonicus. Aquaculture 305, 102-108

Clauss T., Dove A., & Arnold, J. (2008). Hematologic disorders of fish. Veterinary Clinics of North America Exotic Animal Practice, 11(3):445-462.

Dauda, A. B., Dasuki, A., Oshoke, J. O., Nababa, A. S., & Bello, O. M. (2023). Status of Fish Farming in Katsina State, Nigeria: The Current Practices, Operation, Management and Constraints to its Development. Fudma Journal of Agriculture and Agricultural Technology, 9(4), 9-17.

Docan, A., Grecu, I., & Dediu, L. (2018). Use of hematological parameters as assessment tools in fish health status. J. Agroaliment. Process. Technol, 24(4), 317-324.

Dossou, S., Koshio, S., Ishikawa, M., Yokoyama, S., Dawood, M.A.O., El Basuini, M.F., Olivier, A., & Zaineldin, A.I. (2018). Growth performance, blood health, antioxidant status and immune response in red sea bream (Pagrus major) fed Aspergillus oryzae fermented rapeseed meal (RM-Koji). Fish Shellfish Immunol. 75, 253–262.

Dzifa, M.G., Ayisi, C.L., & Alhassan, E.H. (2022). Substitution of fish Meal with Shea Nut Meal in Diets of Nile Tilapia Fry on Growth, Feed Utilization, Tissue histology and Economic Analysis. Pakistan Journal of Zoology, 54(3): 1385.

Egerton, S., Wan, A., Murphy, K., Collins, F., Ahern, G., Sugrue, I., Busca, K., Egan, F., Muller, N., Whooley, J., McGinnity, P., Culloty, S., Ross, R.P., & Stanton, C. (2020). Replacing fish-meal with plant protein in Atlantic salmon (Salmo salar) diets by supplementation with fish protein hydrolysate. Sci Rep 10, 4194. https://doi.org/10.1038/s41598-020-60325-7

Enterria, A., Slocum, M., Bengtson, D. A., Karayannakidis, P. D., & Lee, C.M. (2011). Partial replacement of fish meal with plant protein sources singly and in combination in diets for summer flounder, Paralichthys dentatus. J. World Aquac. Soc 42, 753–765. doi: 10.1111/j.1749-7345.2011.00533.x

Esmaeili, M. (2021). Blood performance: a new formula for fish growth and health. Biology 10, 1–17, https://doi.org/10.3390/biology10121236.

Fagbenro, O., Adeparusi, E., & Jimoh, W. (2010). Haematological profile of blood of African catfish (Clarias gariepinus, Burchell 1822) fed sunflower and sesame meal-based diets. J Fish Aquat Sci 8, 80–86.

Folch, J., Lees, M., Sloane Stanley, G.H. (1957). A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226 (1), 497–509.

Gorissen, S. H., Crombag, J. J., Senden, J. M., Waterval, W. H., Bierau, J., Verdijk, L. B., & van Loon, L. J. (2018). Protein content and amino acid composition of commercially available plant-based protein isolates. Amino acids, 50, 1685-1695.

Guo, J., Guo, B., Zhang, H., Xu, W., Zhang, W. & Mai, K. (2016). Effects of nucleotides on growth performance, immune response, disease resistance and intestinal morphology in shrimp Litopenaeus vannamei fed with a low fish meal diet. Aquac. Int. https://doi. org/10.1007/s10499-015-9967-7.

Gutasi, A. (2021). Benefit and drawbacks of fish meal substitution in aquaculture diets. (Diploma Thesis, University of Veterinary Medicine Vienna).

Habotta, O.A., Dawood, M.A., Kari, Z.A., Tapingkae, W., &Van Doan, H. (2022). Antioxidative and immunostimulant potential of fruit derived biomolecules in aquaculture. Fish Shellfish. Immunol., 130, 317–322.

Hardy, R.W. (2010). Utilization of plant proteins in fish diets: Effects of global demand and supplies of fish-meal. Aquac. Res., 41, 770–776.

Hassan, M., Melad, A.A.N., Yusoff, N.A.H., Tosin, O.V., Norhan, N.A-S., & Hamdan, N.A. (2023). Melaleuca cajuputi leaf extract accelerates wound healing in African catfish, Clarias gariepinus. Aquaculture Reports, 31, 101682. https://doi.org/10.1016/j.aqrep.2023.101682.

Hossain, M.K., Hossain, M.M., Mim, Z.T., Khatun, H., Hossain, M.T., & Shahjahan, M., (2022). Multi-species probiotics improve growth, intestinal microbiota and morphology of Indian major carp mrigal Cirrhinus cirrhosus. Saudi J. Biol. Sci. 9, 103399.

Hosseini S.A., & Khajepour F. (2013). Effect of partial replacement of dietary fish meal with soybean meal on some hematological and serum biochemical parameters of juvenile beluga, Huso huso. Iran. J. Fish. Sci. 12(2):348–356.

Howlader, S., Sumi, K.R., Sarkar, S., Billah, S.M., Ali, M.L., Howlader, J., & Shahjahan, M. (2023). Effects of dietary replacement of fish meal by soybean meal on growth, feed utilization, and health condition of stinging catfish, Heteropneustes fossilis. Saudi J Biol Sci. 30(3):103601. doi: 10.1016/j.sjbs.2023.103601.

Ibrahim, R.E., Amer, S.A., Shahin, S.A., Darwish, M.I.M., Albogami, S., Abdelwarith, A.A., Younis, E.M., Abduljabbar, M.H., Davies, S.J., & Attia, G.A. (2022). Effect of fish meal substitution with dried bovine hemoglobin on the growth, blood hematology, antioxidant activity and related genes expression, and tissue histoarchitecture of Nile tilapia (Oreochromis niloticus). Aquaculture Reports, 26, 101276. https://doi.org/10.1016/j.aqrep.2022.101276.

Ismail, T., Hegazi, E., Dawood, M.A.O., Nassef, E., Bakr, A., Paray, B.A., & Van Doan, H. (2020). Using of betaine to replace fish meal with soybean or/and corn gluten meal in Nile tilapia (Oreochromis niloticus) diets: Histomorphology, growth, fatty acid, and glucose-related gene expression traits. Aquaculture Reports, 17, 100376. https://doi.org/10.1016/j.aqrep.2020.100376.

Jafarpour, M., & Fard, A.N. (2016). The effects of aqueous extract of Melissa officinalis on some blood parameters and liver of Oncorhynchus mykiss. Aquac. Aquar. Conserv. Legis. 9, 748–758.

Jahan A., Nipa T.T., Islam S.M., Uddin M.H., Islam M.S., & Shahjahan M. (2019). Striped catfish (Pangasianodon hypophthalmus) could be suitable for coastal aquaculture. J. Appl. Ichthyol. 35(4):994–1003.

Jannathulla, R., Rajaram, V., Kalanjiam, R., Ambasankar, K., Muralidhar, M., & Dayal, J. S. (2019). Fishmeal availability in the scenarios of climate change: Inevitability of fishmeal replacement in aquafeeds and approaches for the utilization of plant protein sources. Aquaculture Research, 50(12), 3493-3506.

Jia, S., Li, X., He, W., & Wu, G. (2022). Protein-sourced feedstuffs for aquatic animals in nutrition research and aquaculture. Recent Advances in Animal Nutrition and Metabolism, 237-261.

Kari, Z.A., Kabir, M.A., Mat, K., Rusli, N.D., Razab, M.K.A.A., Ariff, N.S.N.A., Edinur, H.A., Rahim, M.Z.A., Pati, S., Dawood, M.A.O. & Wei, L.S. (2021). The possibility of replacing fish meal with fermented soy pulp on the growth performance, blood biochemistry, liver, and intestinal morphology of African catfish (Clarias gariepinus). Aquaculture Reports, 21,100815. https://doi.org/10.1016/j.aqrep.2021.100815.

Khieokhajonkhet, A., Roatboonsongsri, T., Suwannalers, P., Aeksiri, N., Kaneko, G., Ratanasut, K., Inyawilert, W., & Phromkunthong, W. (2023). Effects of dietary supplementation of turmeric (Curcuma longa) extract on growth, feed and nutrient utilization, coloration, hematology, and expression of genes related immune response in goldfish (Carassius auratus). Aquaculture Reports, 32, 101705.https://doi.org/10.1016/j.aqrep.2023.101705.

Khojasteh, S.M.B. (2012). The morphology of the post-gastric alimentary canal in teleost fishes: a brief review. Inter. J. Aquat. Sci. 3 (2), 71–88

Kim, J., & Cho, S.H. (2024). Substitution effect of fish meal with various plant protein sources on growth performance and feed utilization in rockfish (Sebastes schlegeli) diets including jack mackerel meal used as feed stimulants. Front. Mar. Sci. 11:1339471. doi: 10.3389/fmars.2024.1339471

Kim, S. (2013). Christopher Layton and Bancroft John, D. Bancroft’s Theory and Practice of Histological Techniques, 7th ed.

Kpundeh MD, Qiang J, He J, Yang H, & Xu P. (2015). Effects of dietary protein levels on growth performance and haemato-immunological parameters of juvenile genetically improved farmed tilapia (GIFT), Oreochromis niloticus. Aquaculture International. 23(5):1189-1201.

Kumar, V., Makkar, H.P., Amselgruber, W., & Becker, K. (2010). Physiological, haematological and histopathological responses in common carp (Cyprinus carpio L.) fingerlings fed with differently detoxified Jatropha curcas kernel meal. Food Chem. Toxicol. 48, 2063–2072.

Lall S.P., & Kaushik S.J. (2021). Nutrition and Metabolism of Minerals in Fish. Animals. 11(9):2711. https://doi.org/10.3390/ani11092711

Lim, C., Lee, C. S., & Webster, C. D. (Eds.). (2023). Alternative protein sources in aquaculture diets. CRC Press.

Macusi, E.D., Cayacay, M.A., Borazon, E.Q., Sales, A.C., Habib, A., Fadli, N., & Santos, M.D. (2023). Protein Fishmeal Replacement in Aquaculture: A Systematic Review and Implications on Growth and Adoption Viability. Sustainability, 15, 12500. https://doi.org/10.3390/su151612500.

Maftuch, M. (2018). Haematological Analysis of Nile tilapia (Oreochromis niloticus) and Striped Catfish (Pangasius hypophthalmus) using hematology analyzer tool software at Fish Breeding Center Jojogan, Tuban, East Java. Res. J. Life Sci. 5, 107-115, https://doi.org/10.21776/ub.rjls.2018.005.02.4.

Magbanua, T. O., & Ragaza, J. A. (2024). Selected dietary plant-based proteins for growth and health response of Nile tilapia Oreochromis niloticus. Aquaculture and Fisheries, 9(1), 3-19.

Matuli´c, D., Bariˇsi´c, J., Aniˇci´c, I., Tomljanovi´c, T., Safner, R., Treer, T., Gao, J., Glojnari´c, I., & Co ˇ ˇz-Rakovac, R., 2020. Growth, health aspects and histopathology of brown bullhead (Ameiurus nebulosus L.): replacing fishmeal with soybean meal and brewer’s yeast. Sci. Rep. 10, 1104. https://doi.org/10.1038/s41598-020-57722-3.

Maundu, A. M. (2020). Digestibility, growth and economic performance of Nile tilapia (Oreochromis niloticus) fed on a mixture of plant protein diets in cages (Doctoral dissertation, Kenyatta University,).

Mbokane, E.M., Mbokane, L.M., Motimele, S.S., & Hlophe-Ginindza, S.N. (2022). Successes and Challenges of Catfish Farming in the Small-Scale Industry in Southern Africa. IntechOpen. doi: 10.5772/intechopen.106380

Minjarez-Osorio, C., Castillo-Alvarado, S., Gatlin, D. M., González-Félix, M. L., PerezVelazquez, M., & Rossi, W. (2016). Plant protein sources in the diets of the sciaenids red drum (Sciaenops ocellatus) and shortfin corvina (Cynoscion parvipinnis): A comparative study. Aquaculture 453, 122–129. doi: 10.1016/j.aquaculture.2015.11.042

Mohamad, S., & Abasali, H. (2010). Effect of plant extracts supplemented diets on immunity and resistance to Aeromonas hydrophila in common carp (Cyprinus carpio). Agric. J. 5 (2), 119–127.

Montgomery, S., Subasinghe, R.P., Siriwardena, S.N., & Shelley, C.C. (2022). Nigerian aquaculture: An investment Framework for Improved Incomes, New Jobs, Enhanced Nutritional Outcomes and Positive Economic Returns. Monographs, The WorldFish Center, number 41029,

Mutalib, A.A., Alhassan, E.A., & Ayisi, C.L. (2023). Evaluating the Impact of Varied Probiotic Levels (Bacillus Subtilis 200) on Feed Utilization, Growth Performance, and Proximate Composition in African Catfish (Clarias gariepinus). Journal of Energy and Natural Resource Management, 9(2): 52-63.

Mzengereza, K., Ishikawa, M., Koshio, S., Shadrack, R.S., Zhang, Y., Dossou, S., Kotani, T., Shahin, S.A., Zaineldin, A.I., Waqalevu, V., Dawood, M.A.O., Hassan, A.M., Al-Sharif, M.M., &El-Basuini, M.F. (2022). Responses of growth, blood health, pro-inflammatory cytokines genes, intestine and liver histology in Red Seabream (Pagrus major) to camelina meal. Aquaculture Reports, 24, 101175. https://doi.org/10.1016/j.aqrep.2022.101175.

Mzengereza, K., Msiska, O. V., Kapute, F., Kang’ombe, J., Singini, W., & Kamangira, A. (2014). Nutritional value of locally available plants with potential for diets of Tilapia Rendalli in pond aquaculture in NkhataBay, Malawi. J Aquac Res Development, 5(6), 265. doi: 10.4172/2155-9546.1000265

Nasr, M.A.F., Reda, R.M., Ismail, T.A., & Moustafa, A. (2021). Growth, Hemato-Biochemical Parameters, Body Composition, and Myostatin Gene Expression of Clarias gariepinus. Fed by Replacing Fishmeal with Plant Protein. Animals, 11, 889. https://doi.org/10.3390/ani11030889

Ng, W.-K., & Chong, K.-K. (2002). The nutritive value of palm kernel meal and the effect of enzyme supplementation in practical diets for red hybrid Tilapia (Oreochromis sp.). Asian Fish Sci. 15, 167-176.

Perez-Velazquez, M., Gatlin III, D. M., González-Félix, M. L., García-Ortega, A., de Cruz, C. R., Juárez-Gómez, M. L., & Chen, K. (2019). Effect of fishmeal and fish oil replacement by algal meals on biological performance and fatty acid profile of hybrid striped bass (Morone crhysops♀× M. saxatilis♂). Aquaculture, 507, 83-90.

Pirarat, N., Pinpimai, K., Endo, M., Katagiri, T., Ponpornpisit, A., Chansue, N., & Maita, M. (2011). Modulation of intestinal morphology and immunity in nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Res. Vet. Sci. 91(3), 92–97.

Pradhan, S.C., Patra, A.K., Sarkar, B., & Pal A. (2012). Seasonal changes in hematological parameters of Catla catla (Hamilton 1822). Comp. Clin. Path. 21(6):1473-1481.

Rahmdel, K.J., Noveirian, H.A., Falahatkar, B., & Lashkan, A.B. (2018). Effects of replacing fish meal with sunflower meal on growth performance, body composition, hematological and biochemical indices of common carp (Cyprinus carpio) fingerlings. Arch. Polish Fish., 26, 121-129.

Rani, P., Kumar, V., Rao, K.R., & Shameem, U. (2016). Seasonal variation of proximate composition of tuna fishes from Visakhapatnam fishing harbor, east coast of India. Int. J. Fish. Aquat. Stud. 4 (6), 308-313.

Rastiannasab, A., Afsharmanesh, S., Rahimi, R., & Sharifian, I. (2016). Alternations in the liver enzymatic activity of Common carp, Cyprinus carpio in response to parasites, Dactylogyrus spp. and Gyrodactylus spp. J. Parasit. Dis. 40,1146–1149, https://doi.org/10.1007/s12639-014-0638-9.

Roslan, N.A., Sukri, S.A.M., Wei, L.S., Shahjahan, Md., Rohani, Md.F., Yea, C.S., Kabir, M.A., Guru, A., Goh, K.W., Kallem, P., & Kari, Z.A. (2024). Replacement of fish-meal by fermented spent coffee ground: Effects on growth performance, feed stability, blood biochemistry, liver, and intestinal morphology of African catfish (Clarias gariepinus). Aquaculture Reports, 36, 102073. https://doi.org/10.1016/j.aqrep.2024.102073.

Sangavi, S., Sawant, P.B., Ande, M.P., Syamala, K., & Chadha, N.K. (2020). Dietary inclusion of non-conventional palm kernel meal enhances growth, digestive enzyme activities and carcass characteristics of juvenile rohu (Labeo rohita). Aquaculture Reports, 18, 100502. https://doi.org/10.1016/j.aqrep.2020.100502.

Senthilkumaran, A., Babaei-Ghazvini, A., Nickerson, M. T., & Acharya, B. (2022). Comparison of protein content, availability, and different properties of plant protein sources with their application in packaging. Polymers, 14(5), 1065.

Serrano, E., Lefillanca, J.K., Carrasco, J., Davies, S.J., & Arias, A.J.H. 2024. Evaluation of andean lupin (Lupinus mutabilis) seed meal as a dietary component on growth performance, feed utilization, nutrient digestibility, and liver histology of rainbow trout (Oncorhynchus mykiss) Juveniles. Aquaculture Reports, 34, 101919. https://doi.org/10.1016/j.aqrep.2024.101919.

Sharmin S., Salam M.A., Haque F., Islam M.S., & Shahjahan M. (2016). Changes in hematological parameters and gill morphology in common carp exposed to sub-lethal concentrations of malathion. Asian J. Med. Biol. Res. 2(3):370–378.

Shuaib, M., Hafeez, A., Chand, N., & Tahir, M. (2022). Effect of Dietary Inclusion of Soybean Hull on Production Performance and Nutrient Digestibility During Peak Egg Production Period with Different Phases in Laying Hens. Pakistan J. Zool., 55(1): 397-405. https://dx.doi.org/10.17582/journal.pjz/20211105091115.

Teixeira, M.A., Chaguri, Ld.C.A.G., Carissimi, A.S., Souza, N.Ld, Mori, C.M.C., Gomes, V. M.W., Poli Neto, A., Nonoyama, K., & Merusse, J.L.B. (2000). Hematological and biochemical profiles of rats (Rattus norvegicus) kept under microenvironmental ventilation system. Braz. J. Vet Res. Anim. Sci. 37, 341-347.

Ur´an, P.A., Schrama, J.W., Rombout, J.H.W.M., Obach, A., Jensen, L., Koppe, W., Verreth, J.A.J., 2008. Soybean meal-induced enteritis in Atlantic salmon (Salmo salar L.) at different temperatures. Aquac. Nutr. 14, 324-330. https://doi.org/10.1111/ j.1365-2095.2007.00534.x.

van de Wouw, J., & Joles, J.A. (2022). Albumin is an interface between blood plasma and cell membrane, and not just a sponge. Clinical Kidney Journal, 15(4): 624–634, https://doi.org/10.1093/ckj/sfab194.

Wan, M. S. (2015). Investigation of alternative ingredients for the replacement of fish meal in formulation of feed for Malaysian mahseer fingerlings, Tor Tambroides (Doctoral dissertation, UTAR).

Zakaria, M.K., Kari, Z.A., Van Doan, H., Kabir, M.A., Che Harun, H., Mohamad Sukri, S.A., Goh, K.W., Wee, W., Khoo, M.I., & Wei, L.S. (2022). Fermented Soybean Meal (FSBM) in African Catfish (Clarias gariepinus) Diets: Effects on Growth Performance, Fish Gut Microbiota Analysis, Blood Haematology, and Liver Morphology. Life, 12, 1851. https://doi.org/10.3390/life12111851

Zhang, J.-X., Guo, L.-Y., Feng, L., Jiang, W.-D., Kuang, S.-Y., Liu, Y., Hu, K., Jiang, J., Li, S.-H., Tang, L., & Zhou, X.-Q. (2013). Soybean β-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish. PLoS ONE 8 (3), e58115. https://doi.org/10.1371/journal.pone.0058115.

Zhang, X., Wang, H., Zhang, J., Lin, B., Chen, L., Wang, Q., Li, G., & Deng, J. (2020). Assessment of rapeseed meal as fish meal alternative in diets for juvenile Asian red-tailed catfish (Hemibagrus wyckioides). Aquaculture Reports 18, 100497

Zhang, X.D., Zhang, J.W., Wang, H.Z., Lin, B.B., Chen, L.S., Li, G.B., Wang, Q.M., & Deng, J. M. (2019). Evaluation of soybean meal as alternative to fish meal in diet for juvenile Asian red-tailed catfish (Hemibagrus wyckioides). Aquacul. Nutr. 0, 1-14.

Zhou, J. B., Zhou, Q. C., Chi, S. Y., Yang, Q. H., & Liu, W.C. (2007). Optimal dietary protein requirement for juvenile ivory shell, Babylonia areolata. Aquaculture, 270, 186e192.

Published

2025-10-02

How to Cite

Ayisi, C., Tia, M. N. ., Ayeh, S. O., & Asemah, C. (2025). Incorporating palm kernel meal, cowpea husk and soybean husk as protein sources in catfish diets: Effects on growth, hematology and intestinal histology. Journal of Environment and Sustainable Development (JESD), 5(2), 50–70. Retrieved from https://www.jesd.uesd.edu.gh/index.php/main/article/view/149